(x^2)+(2x^2)=12100

Simple and best practice solution for (x^2)+(2x^2)=12100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)+(2x^2)=12100 equation:



(x^2)+(2x^2)=12100
We move all terms to the left:
(x^2)+(2x^2)-(12100)=0
We add all the numbers together, and all the variables
3x^2-12100=0
a = 3; b = 0; c = -12100;
Δ = b2-4ac
Δ = 02-4·3·(-12100)
Δ = 145200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{145200}=\sqrt{48400*3}=\sqrt{48400}*\sqrt{3}=220\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-220\sqrt{3}}{2*3}=\frac{0-220\sqrt{3}}{6} =-\frac{220\sqrt{3}}{6} =-\frac{110\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+220\sqrt{3}}{2*3}=\frac{0+220\sqrt{3}}{6} =\frac{220\sqrt{3}}{6} =\frac{110\sqrt{3}}{3} $

See similar equations:

| 6x+7=8x-41 | | (X-9.5)/((x+9.5)/2)=0.1 | | 1x-10=-3x+82 | | t+66=-55 | | Y=14x+67 | | 6x-6=3x+60 | | 3b+13=49 | | X+10x+3+90=180 | | 3x+17^2=4 | | 76=3x+3x+4 | | {5}{t}+{3}={8}5t+3=8 | | 1.22+7.9h+7.79=-16.89+6.5h | | Y=32x+416 | | 14=4+2v | | 4r+9=17 | | x-11.4=0.2x | | 10=5=n | | -x-163=12x=84 | | 2d/6=31/6 | | 3x-12=-5x+15 | | -8+u/4=-16 | | -13m-3=-12m | | 25+c=37 | | a+10=-22 | | 4=q/2+6 | | 8-10x=2x-24 | | v-25=65. | | X-2(6x+7)=-24+x | | x2+2x2=12100 | | (8x-35)°(6x-5)°(3x-1)°x=​ | | -n=-12.244 | | 12x+15+15x=180° |

Equations solver categories